echo '' ;

ESP8266 NodeMCU Module – I2C

The code provided demonstrates the usage of the I2C (Inter-Integrated Circuit) protocol on an ESP8266 NodeMCU module. I2C is a popular serial communication protocol used to connect multiple peripherals with a microcontroller or a microprocessor. In this context, the code initializes the I2C interface on the NodeMCU module and showcases how to read data from a specific register of an I2C device.

Pr-Request to Lean

ESP8266 I2C Core

ESP8266 hardware supports only one i2c. But in  bit-banking(Bar Metal code) method you can use all your gpio pin as i2c pins. ESP8266 NodeMCU firmware platform supports only standard speed mode (Sm) 100khz . That means ESP8266 NodeMCU firmware supports 100Kbps for data transfer.


ESP8266 I2C Scanner

  • Required NodeMCU Modules (Firmware) : GPIO Module, I2C Module
  • Required hardware : ESP8266 with Programmer (or)  NodeMCU Dev Kit
  • Required software tools : ESPlorer IDE Tool

Code

This script helps identify I2C devices connected to the ESP8266 NodeMCU board by scanning through all possible device addresses and checking for responses. It’s useful for troubleshooting and verifying the connectivity of I2C devices in the system.

lua
-- https://www.aruneworld.com/embedded/espressif/esp8266/esp8266_nodemcu/
-- Tested By: Arun(20170112)
-- Example Name: AEW_I2C_DeviceScaner.lua
----------------------------------------

-- Setup
local id = 0 -- always 0
local pinSDA = 2 -- 1~12, IO index
local pinSCL = 1 -- 1~12, IO index
local speed = i2c.SLOW -- only i2c.SLOW supported

-- Initialize
i2c.setup(id, pinSDA, pinSCL, speed) -- Initialize the I²C module.
print("Scanning Started....")

for count = 0, 127 do
    i2c.start(id) -- Send an I²C start condition.
    local Status = i2c.address(id, count, i2c.TRANSMITTER) -- Setup I²C address and read/write mode for the next transfer.
    i2c.stop(id) -- Send an I²C stop condition.

    if Status == true then
        print("Addrss - " .. count .. " Detected device address is 0x" .. string.format("%02x", count) .. " (" .. count .. ")")
    elseif Status == false then
        print("Addrss - " .. count .. " nil")
    end
end

print("Scanning End")

Explanation

This Lua script is designed to scan for I2C devices connected to an ESP8266 NodeMCU board. Here’s a breakdown of its functionality:

Setup:

  • It initializes the variables id, pinSDA, pinSCL, and speed.
  • id is set to 0, which typically refers to the first I2C interface on ESP8266 NodeMCU.
  • pinSDA and pinSCL are set to the GPIO pins used for SDA (data line) and SCL (clock line), respectively.
  • speed is set to i2c.SLOW, indicating the desired speed for I2C communication.

Initialization:

  • It initializes the I2C module using i2c.setup() with the specified id, pinSDA, pinSCL, and speed.

Scanning for Devices:

  • It iterates through possible device addresses from 0 to 127.
  • For each address, it attempts to establish communication with the device by sending a start condition (i2c.start()), setting the address (i2c.address()), and then stopping the communication (i2c.stop()).
  • If communication is successful (Status == true), it prints the detected device address in hexadecimal and decimal format.
  • If communication fails (Status == false), it prints “nil” for that address.

Printing Results:

  • It prints “Scanning Started….” before starting the scanning loop.
  • It prints “Scanning End” after the scanning loop is complete.

This table breaks down the code into its key components, making it easier to understand the flow and purpose of each part of the script.

LineExplanation
1-4Introduction and setup of necessary variables and constants.
6Initialization of the I2C module with specified parameters.
8-15Loop to iterate through possible device addresses (0 to 127).
10Start condition for I2C communication.
11Attempt to set the address and read/write mode for the next transfer.
12Stop condition for I2C communication.
13-15Check if the status of the communication is successful and print the detected device address.
17Print “Scanning Started….” to indicate the beginning of the scanning process.
18-21Loop to scan through all possible device addresses and attempt communication.
22-25Print “Scanning End” to indicate the completion of the scanning process.

ESP8266 I2C Example

Code

id = 0
sda = 1
scl = 2

-- Initialize I2C, set pin1 as SDA, set pin2 as SCL
i2c.setup(id, sda, scl, i2c.SLOW)

-- User-defined function: Read from reg_addr content of dev_addr
function read_reg(dev_addr, reg_addr)
    i2c.start(id)
    i2c.address(id, dev_addr, i2c.TRANSMITTER)
    i2c.write(id, reg_addr)
    i2c.stop(id)
    i2c.start(id)
    i2c.address(id, dev_addr, i2c.RECEIVER)
    c = i2c.read(id, 1)
    i2c.stop(id)
    return c
end

-- Get content of register 0xAA of device 0x77
reg = read_reg(0x77, 0xAA)
print(string.byte(reg))

Code Explanation

This code sets up an I2C interface, defines a function to read data from a specific register of an I2C device, and then uses this function to read the content of a specific register from a specific device address.

Line(s)Explanation
1-3Define the I2C interface parameters: id for the I2C bus, sda for the data line, and scl for the clock line.
5Initialize the I2C communication with the specified parameters (I2C bus, SDA pin, SCL pin, and speed).
8-16Define a custom function read_reg to read data from a specified register address of a given device address.
9-11Start the I2C communication and address the device in write mode to specify the register to read from.
12Write the register address to the device.
13Stop the I2C communication after writing the register address.
14-16Restart the I2C communication, address the device in read mode, read one byte of data from the device, and then stop the I2C communication.
17-19Call the read_reg function to read the content of register 0xAA from device address 0x77.
20Print the byte value of the register content returned by the read_reg function.

See Also

NEXT

NodeMCU Get Start
NodeMCU Build Firmware
NodeMCU Flash Firmware
NodeMCU IDE
ESP8266 NodeMCU Modules
NodeMCU Module–Firmware Info
NodeMCU Module – GPIO
NodeMCU Module – Node
NodeMCU Module – WiFi
NodeMCU Module – Timer
NodeMCU Module – I2C
NodeMCU Module – File
NodeMCU Module – NET
NodeMCU Module – HTTP
NodeMCU Module – MQTT
ESP8266 NodeMCU Interface
NodeMCU Interface LED
NodeMCU Interface Button
NodeMCU Interface 7 Seg
NodeMCU Interface LCD
NodeMCU Interface ADC
NodeMCU Interface DHT11
NodeMCU Interface MCP23008
NodeMCU Interface MCP23017
NodeMCU Interface ADXL345
NodeMCU Interface DS18B20
ESP8266 NodeMCU Tutorials
NodeMCU Tutorials Google Time
NodeMCU Tutorials WebServer
ESP8266 NodeMCU Projects
Imperial March Ringtone Play
WiFi Router Status Indicator
ESP8266 NodeMCU Project – Home Automation
Others
NodeMCU All Post
Sitemap

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Discover more from ArunEworld

Subscribe now to keep reading and get access to the full archive.

Continue reading